THE CORRELATION THEORY OF CONCENTRATION
FLUCTUATIONS IN DISPERSED SYSTEMS

Yu. A. Buevich UDC 533.73

The fluctuations in the volume concentration of the dispersed phase are considered via the cor-
relation theory of stationary random processes; the formula is derived for the rms pertur-
bation in the concentration, which corresponds to a two point two-time correlation function,
which is expressed as a simple integral,

The random pulsating motions of particles in the real dispersed system lead to concentration fluctua-
tions resembling the density fluctuations due to the thermal motion of gas molecules. If the individual par-
ticles are satistically independent (this is equivalent to the hypothesis of molecular chaos in the kinetic
theory of gases), then the spatial and time scales of these fluctuations are of the order of the mean distance
between particles and the mean time to pass across this distance respectively, In fact, the suspended par-
ticles interact not only by direct collision but also via random pressure fields and velocities on account of
the dispersion medium, which perturbs the random motions of the particles. The result is correlation
between the behavior of the particles placed fairly close together, and consequent large-scale concentra-
tion fluctuations. Examples of these are found in the dense aggregates or clumps containing a fairly large
number of particles and eavities filled with uniform dispersion medium. On the whole, such fluctuations
resemble the critical fluctuations in density in an ordinary gas or the fluctuations in systems with long-
range forces, e.g., in a cloud of charged particles. The position is made even more complicated by the
scope for disturbance in the hydrodynamic stability of a spatially uniform flow in a dispersed system and
the occurrence of purely hydrodynamic perturbations.

Quantitative evaluation of this nonuniformity, in particular for fluidized beds, is of interest in rela-
tion to the marked effect of the degree of nonuniformity on important technological processes in such sys-
tems [1]. Also, statistical desecription of the local concentration in such a system is extremely important
in constructing a statistical theory of dispersed systems and formulation of hydrodynamic models for them

f21.
The density of dispersed system is characterized below by means of the bulk particle concentration
p, which is related to the porosity € by p = 1—-¢g; we put
D=0+ 0, Pp=<p> <p'>=0. (1)

Consider the concentration perturbation p' as a random function of t and r, which we represent as the
following integral [3, 4]:

p/ (t, l'): yj' eimt—{—ikr dZ,

where the integration is extended to the entire frequency axis w and the entire wave space k. A spectral
measure dZ of the random process p'(t, r) has a number of properties that have been considered in detail
[3], the most important of which is expressed by

lim <dZ* (o, k) dZ (o', K')>
dw,dk—-0 dodk,dk,dk,
dk, =k, —k;,

=¥ (o, k), do =0 —o,
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where ¥(w, k) is the spectral density of process p'(t, r); there is a theorem [3] that the correlation function of
of p'(t, ¥) may be put as

-

Rﬁs%%:<qf0,ﬂp%t+r,r+gt>:=[yémﬂﬁrv@xk)@ﬂm (2)
which enables us to determine R(r, _53 for any 7, E,’ if we know ¥(w, k).

Consider the partial spectral density ®(k), which is defined by analogy with (2) for the one-time (7 = 0)
two-point (¢ = 0) correlations of process p'(t, r); by definition we have

DO k) = | ¥ (o, k) do.

We assume that the particles are statistically independent, and their positions in space may be defined
with any required accuracy; then n', which is the deviation of the true instantaneous number of particles in
unit volume from the mean n,, may be expressed as a sum over § functions, which correspond to the
positions of the centers of the particles [5]. As all the particles are on the same footing and the system is
statistically uniform, we can treat as independent the values of n' in any intersecting volumes for any given
instant of time, i.e., the spectral density of process n'(t, r), as defined via one-time correlation functions,
is not dependent on k [3]. An analogous result can be obtained directly by expanding the & functions as
Fourier series. It is clear the same statement applies to the random process p'(t, r), i.e., we have

@ (k) = C = const. (3)

In fact, the particles each have a finite volume, and the position of the centers can be defined only
with the accuracy represented by a certain volume o¢, which is not zero, Formally this means that a par-
ticle must be represented not by a é-function but by the function ’

O (r—r, () = 07! Y (b —Ir —r, (1), Ym:{" x>0, (4)
: 0, x<0,
where Y(x) is a Heaviside function, T (t) is the radius vector of the j-th particle,and by is the radius of the sphere
having volume o, The particleis, as it were, smeared out over a volume gf. We use the functions of (4) in place
of the functions 6(r—rg(t)), which is equivalent to the procedure for smoothing out short-wave details of the

spectrum, which has been proposed [6] in the statistical mechanics of liquids, although in that particular
case the author used a Gaussian function in place of a Heaviside one. Ag a result, instead of (3) we get [5]

sin kb; — kb, cos kb,
(kb;)

® (k) - 3C

To determine the constant C in (5) we use the result of [7], which gives
<n'E> == 0y (1= 0y/ps) 1y (6)

From (5) we get as follows by representing p'(t, r) in the following integral form:

; 3
; 1 & 2 g ‘1—cos ki,
e ’ N a2 = J
=~ 8“3Clllzlsg-27 111213 =V o=, kili > L
Comp:irison of (6) and (7) gives us an expression for C, and in place of (5) we have
O (k) = E‘Po (1__ &> sin kb; — kb, cos kb, ‘ ®)
g’ s (kb

We also consider what bf equals in a system of statistically independent particles. The mean specific
volume in the system for any individual particle is clearly o, = opp!; but the center of the particle may then
not be at any point in the volume o, but only within some other volume o, < 0,, because of the finite volume
of the particles and the screening effects of adjacent particles on the displacement of any one particle within
its specific volume, By analogy with the terminology used in the statistical physics of liquids, it is con-
venient to call oy the free volume of a particle in the system, which may be determined as the difference
between the specific volumes in the actual state and in the close-packed state, when py =p,, i.e., we have
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B )"3. (a)

: a
O—f:O'D.-—O'*) 0*:0'9—;1, bf: ——l’/_g (1
P\ O

In the close packed state, oy and by are zero,

Instead of smoothing out the short-wave part of the spectrum for the local perturbations in concentra-
tion by smearing a particle over its free volume, we could use essentially different arguments by consider-
ing the truncation of the short-wave part of the spectrum directly in wave space; this operation is in fact
an extension of Debye's method of defining the number of harmonics in the Fourier representation of a
random process with respect to the number of degrees of freedom in the system, We assume that &(k) =0
for k > k; and put

® k) =CY (k,—k), C' = const.
We naturally define k; and the constant C' such that the integral of &(k) over wave space is equal to

the corresponding integral of the function of (8), while < n'?> is calculated according to (7), which also
would coincide with (6). Then simple steps for a system of statistically independent particles give

3 0 0y 3a\1B |
Ok)y=— = [1—22) Y (k,—h), ko= |—] —. 10
) 4“3( A RECELIE (2) h (10)

Equation (10) represents a certain approximation to the spectral density of (8), and it is particularly
convenient in practical definition of the pulsation rate in the system, the transport coefficients, etc.(see
[2], for example). It is readily verified that, apart from a constant cofactor, functions (8) and (10) are
Fourier transforms one of the other; this is not surprising, since Debye's approximation is just simply
the method due to Messignon quoted above, but applied not to actual space but in wave space,

We now assume that the random behavior of adjacent particles is correlated, and that the particles
perform pulsation motions in groups, each of which consists of several particles: it is readily seen that
the arguments leading to (8) and (10) still apply, but (9) for bg and (10) for ky now become incorrect, because
they were obtained from a discussion of the free volume of a single particle. The true by must be greater
than the by given by (9), while the corresponding ky must be less than the k; from (10), and so bf may be
considered as a measure of the mean linear size of a group of particles involved in pulsating motion. The
reduction in the number of harmonics in the Fourier representation of p'(t, r), i.e., reduction in k;, reflects
a reduction in the number of independent degrees of freedom when there are correlations between particles,
which are linked into groups.

From (8) or (10) we have the mean-square fluctuation as

<p'T> = f@(k)dk:pg (1_%)_ a1

This quantity, if considered as a function of p), has a maximum at p, =2/3px. It is of interest to
compare (11) with experimental evidence [1, 8] for a fluidized bed; at the core of the bed, i.e., the main
part in the height, as p, approximately linear and very close fo py, i.e., < p'2> ~ CAp, where Ap =px —0p»
and C is approximately constant, which agrees qualitatively with observations [1.8]. In the upper zone of
the bed, where there is a sharp fall in g, the fluctuation < p'? > at first rises sharply to a maximum, and
then it falls sharply, which also corresponds with experiment. Unfortunately, direct comparison with the
experiments of [1, 8] is difficult in view of the absence of exact numerical data on Ap and the variation in
this with height in the experiments,

The quantity of (11) is dependent only on gy and px, and it is not dependent, for instance, on bg or k,
and the other parameters that define the behavior of the local pulsations.

It is of interest for applications to consider also the correlation function of p'(t, r), which relates the
values of this quantity at two points in space at different instants in time., The one-time two-point correla-
tion is easily expressed as an ordinary integral [3] over wave space with respect to e‘kg -&(k), by analogy
with the integral of (2). To obtain the expression for the two-point two-time correlation function, we need
the dynamic equation for o'(t, r); the simplest assumption would correspond to the hypothesis that this
quantity satisfies the ordinary diffusion equation in Fick's form. This is the point of view adopted as re-
gards the dynamics of concentration perturbations in the classical statistical treatment of Brownian motion
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by Smoluchowski and Einstein, and also in the theory of concentration fluctuations for dense disperse sys-
tems in [7]. The after-effect probability introduced there was calculated via Fick's equation; but it has
been shown [9] that it is a very crude approximation to apply Fick's equation to a dispersed system, and one
should use the equation

dp’ 2
—a‘——;—:[(D_{?—..@-)_—ﬂ a_;I p" trD = Dii’

where D is the tensor for the effective diffusion coefficients, and w*? is the mean square of the pulsation
velocity of the particles.

This equation describes a regular degeneration of the random distribution p'(t, r) given at some initial
moment in time, This degeneracy is accompanied by random accumulation of fresh concentration perturba-
tions, which of course is not described by this equation, However, the random occurrence of perturbations
may be taken into account by introducing on the right an additional random term, in which the time for sub-
stantial change is much less than the characteristic time of the degeneration (see discussion in [2]), Then
this term may be considered roughly as a Markov time function whose spectral density is not dependent on
the frequency w., We use the above representation for p'(t, r) in this supplemented equation to get in the
usual way [3] a relationship for Ww, k):

Vo = a® [0 (2 ook

The unknown &,(k) appearing here may be derived from the condition

{ ¥ (o, k) do =0 k),

so finally we have

trD

w*2

¥ (o, k) — KK [mz + ( mz———Dkk)z]_](D(k). (12)
14

Substitution of (12) into (2) gives us the space-time correlation function R(r ,—g) in terms of the effec-
tive diffusion coefficients for the particles in the mixture and the mean square of the pulsation velocity.

All the above relates to the case where one can assume the most accurate possible definition of the
local values of p'(f, r) via the elucidation of situations in individual specific volumes; in fact, in experiments
one can use devices that somewhat smooth out thelocal concentration perturbations, for instance, that per-
form averaging over a definite volume of the mixture, which contains on average N particles., All the above
formulas are suitable for describing such an experiment provided that we remember than in (6) in this case
there appears a factor N~!, and consequently the value of &(k), W(w, k), < c'? >, ete. from such an experiment
are also reduced by a factor N,

NOTATION
2 is the volume concentration of disperse system;
a ig the radius of particle;
g, 0y, ¢ are volume, specific volume in a dense packed system;
b is the radius of volume og;
w is the frequency;
k is the wave vector;
D is the tensor of diffusion coefficients;
we is the mean square fluctuation velocity;
T, &, are arguments of correlation function;
<> means averaging,
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