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The fluctuations in the volume concentrat ion of the d ispersed  phase a re  considered via the co r -  
relat ion theory  of s ta t ionary  random processes ;  the formula is der ived for the rms  p e r t u r -  
bation in the concentrat ion,  which cor responds  to a two point two- t ime cor re la t ion  function, 
which is expressed  as a simple integral .  

The random pulsating motions of par t ic les  in the rea l  d ispersed  sys tem lead to concentrat ion f luctua- 
t ions resembl ing the densi ty  fluctuations due to the the rmal  motion of gas molecules .  If  the individual p a r -  
t ic les  a re  sa t i s t ica l ly  independent (this is equivalent to the hypothesis  of molecu la r  chaos in the kinetic 
theory  of gases) ,  then the spatial and t ime scales  of these fluctuations a re  of the o rde r  of the mean distance 
between par t ic les  and the mean t ime to pass ac ross  this distance respect ively .  In fact,  the suspended pa r -  
t ic les  in terac t  not only by d i rec t  coll ision but also via random p r e s s u r e  fields and veloci t ies  on account of 
the dispers ion medium, which per tu rbs  the random motions of the par t ic les .  The resu l t  is cor re la t ion  
between the behavior  of the par t ic les  placed fa i r ly  close together ,  and consequent l a rg e - s ca l e  concent ra -  
tion fluctuations. Examples  of these are  found in the dense aggregates  or  clumps containing a fa i r ly  la rge  
number  of par t ic les  and cavi t ies  filled with uniform dispers ion medium. On the whole, such fluctuations 
r e semble  the cr i t ica l  fluctuations in densi ty in an ord inary  gas o r  the fluctuations in sys tems  with long- 
range forces ,  e . g . ,  in a cloud of charged par t ic les .  The position is made even more  complicated by the 
scope for  dis turbance in the hydrodynamic stabil i ty of a spatial ly uniform flow in a d ispersed sys tem and 
the occu r rence  of pure ly  hydrodynamic per turba t ions .  

Quantitative evaluation of this nonuniformity,  in pa r t i cu la r  for  fluldized beds, is of in te res t  in r e l a -  
tion to the marked  effect of the degree  of nonuniformity on important  technological p roces se s  in such sy s -  
tems  [1]. Also, s ta t is t ical  descr ipt ion of the local concentrat ion in such a sys tem is ex t r eme ly  important  
in constructing a s ta t is t ical  theory  of d i spersed  sys tems  and formulat ion of hydrodynamic models for  them 
[21. 

The densi ty of d i spersed  system is charac te r i zed  below by means of the bulk par t ic le  concentrat ion 
p,  which is re la ted to the poros i ty  e byp  = l - s ;  we put 

P = P 0 + P ' ,  P 0 = < P > ,  < P ' >  ~-0. (1) 

Consider  the concentrat ion per turbat ion p' as  a random function of t and r ,  which we r ep re sen t  as the 
following integral  [3, 4]: 

p' (t, r )=  ~ e t''~ dZ, 

where the integration is extended to the ent i re  f requency axis co and the ent i re  wave space k. A spect ra l  
measure  dZ of the random process  p'(t, r) has a number  of p roper t i es  that have been considered in detail  
[3], the most  important  of which is expressed  by 

lira ~ d Z *  (o~, k) dZ (o~', k ' )>  = ~ @, k), do~ = to' - -  e,~, 
do,,~k-~O dodkldk.zdk a 

dk i = k~ - -  Ir 
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where  ~-'(w, k) is the spec t r a l  densi ty  of p r o c e s s  p'(t ,  r); the re  is a t heo rem [3] that the cor re la t ion  function of 
of p'(t ,  r) m a y  be put as 

R(,, {) = < p '  (t, r) p' (t -~- ~, r + ~ >  = .!',I" d~ (o, k) do)dk, (2) 

which enables  us to de t e rmine  R(r,  0 for  any r ,  ~, if we know ~I,(w, k). 

Consi_der the par t ia l  spec t r a l  densi ty  (k(k), which is defined by analogy with (2) for  the one - t ime  ('r = 0) 
two-point  (~ # 0) co r re l a t ions  of p r o c e s s  p'(t,  1"); by definition we have 

(1)(k)- S T(~o, k) dc0. 

We a s s u m e  that  the pa r t i c l e s  a r e  s t a t i s t i ca l ly  independent, and the i r  posi t ions  in space m a y  be defined 
with any requ i red  accuracy ;  then n ' ,  which is the deviation of the t rue  instantaneous number  of pa r t i c l e s  in 
unit volume f rom the mean no, m a y  be e x p r e s s e d  as a sum over  5 functions,  which co r respond  to the 
posi t ions  of the cen te r s  of the pa r t i c l e s  [5]. As all the pa r t i c l e s  a r e  on the same  footing and the s y s t e m  is 
s t a t i s t i ca l ly  uni form,  we can t r e a t  as independent the values  of n '  in any in tersec t ing  volumes for  any given 
instant  of t ime ,  i . e . ,  the spec t ra l  densi ty  of p r o c e s s  n '( t ,  r) ,  as  defined via one - t ime  cor re la t ion  functions, 
is not dependent on k [3]. An analogous r e su l t  can be obtained d i rec t ly  by expanding the 6 functions as 
F o u r i e r  s e r i e s .  I t  is c l e a r  the s ame  s t a t ement  appl ies  to the random p roces s  p'(t ,  r ) ,  i . e . ,  we have 

Op(k) - C = c o n s t .  (3) 

In fact ,  the p a r t i c l e s  each have a finite volume,  and the posi t ion of the cen te r s  can be defined only 
with the accu racy  r e p r e s e n t e d  by a cer ta in  volume of, which is not zero .  F o r m a l l y  this means  that  a p a r -  
t ic le  mus t  be r ep re sen t ed  not by a 6-function but by the function 

O ( r - - r j ( t ) ) = o 7 1 y ( b i - - [ r - - r ~ ( t ) [ ) ,  Y ( x ) = { l '  x > 0 ,  (4) 
�9 O, x - < O ,  

where  Y(x) is a Heavis ide  function, r j  (t) is the radius  vec to r  of the j - th  part icle ,  and bf is the rad ius  of the sphe re  
having volume af. The pa r t i c l e  is ,  as it were ,  s m e a r e d  out over  a volume (rf. We use  the functions of (4) in place  
of the functions 5 ( r - r j ( t ) ) ,  which is equivalent  to the p rocedu re  for  smoothing out sho r t -wave  deta i ls  of the 
s p e c t r u m ,  which has Been proposed  [6] in the s ta t i s t ica l  mechanics  of l iquids,  although in that  pa r t i cu l a r  
case  the author  used a Gauss ian  function in place of a Heavis ide  one. As a resu l t ,  instead of (3) we get  [5] 

(I) (k) == 3C sin kb s - -  kb t cos kbf 
(kb~)~ (5) 

To de t e rmine  the constant  C in (5) we use the r e su l t  of [7], which g ives  

< n ' ~ >  .... 9o (1--,%/P,) no. (6) 

F r o m  (5) we get  as follows by r ep resen t ing  p'( t ,  r) in the following integral  fo rm:  

3 ! 1 , 2 8 dk H {' 1-- cos kjl~ < n ' ~ >  ~:: --~ ,o (t, r) dr,  ) .... a7 ( - - k 2 . ~  ] q) (k) 
' ] = l  

.~ 8z~aCl~lzlacr -2, Ill21 ~ := V ::= l, kili )) I. 

Compar i son  of (6) and (7) gives  us an express ion  for  C, and in place  of (5) we have 

(7) 

3a ( ~ , )  s inkbt--kblc~ 
(I)(k):= 8--TO 0 1-- P0 (kbl)a (8) 

We a lso  cons ider  what bf equals in a s y s t e m  of s t a t i s t i ca l ly  independent pa r t i c l e s .  The mean specif ic  
volume in the s y s t e m  for  any individual pa r t i c l e  is c l ea r ly  % = a ~ i ;  but the center  of the par t i c le  may  then 
not be at  any point in the volume % but only within some other  volume af  < %, because  of the finite volume 
of the pa r t i c l e s  and the sc reen ing  ef fec ts  of adjacent  pa r t i c l e s  on the d i sp lacement  of any one pa r t i c l e  within 
its speci f ic  volume.  By analogy with the t e rmino logy  used in the s ta t i s t ica l  physics  of l iquids,  it i s  con- 
venient  to call  gf the f r ee  volume of a pa r t i c le  in the sy s t em,  which m a y  be de te rmined  as the d i f ference  
between the speci f ic  volumes  in the actual  s ta te  and in the c lose -packed  s ta te ,  when P0 = P,,  i . e . ,  we have 
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a (1 - -  poll~Z-- . (a) 
~j = % - -  ~., ~. ---- ~,o.', b i = O0,/--- ~ P. 

In the c lose  packed s ta te ,  af  and bf a r e  zero .  

Ins tead of smoothing out the shor t -wave  pa r t  of the spec t rum for  the local  per tu rba t ions  in concen t ra -  
tion by smea r ing  a pa r t i c l e  ove r  its f r ee  volume,  we could use essen t i a l ly  different  a rguments  by cons ide r -  
ing the t runcat ion of the shor t -wave  pa r t  of the spec t rum d i rec t ly  in wave space;  this operat ion is in fact  
an extension of Debye ' s  method of defining the number  of ha rmon ics  in the F o u r i e r  r ep resen ta t ion  of a 
random p roces s  with r e s p e c t  to the number  of degrees  of f reedom in the sys t em.  We a s sume  that  r = 0 
for  k > k 0 and put 

qb (k) = C'Y (k 0 - -  k), C' = const. 

We na tura l ly  define k 0 and the constant  C'  such that  the in tegral  of r ove r  wave space  is equal to 
the cor responding  in tegra l  of the function of (8), while < n '2 > is calculated according to (7), which a lso  
would coincide with (6). Then s imple  s teps  for  a sy s t em of s t a t i s t i ca l ly  independent pa r t i c l e s  give 

3 ~2o 1-pc" r(ko--k), ko= (10) 

Equation (10) r e p r e s e n t s  a cer ta in  approximat ion to the spec t ra l  densi ty  of (8), and it is pa r t i cu l a r ly  
convenient  in p rac t i ca l  definition of the pulsation ra te  in the sys t em,  the t r a n s p o r t  coeff ic ients ,  e tc .  (see 
[2], for  example) .  I t  is read i ly  ver i f ied  that,  apa r t  f rom a constant  cofac tor ,  functions (8) and (10) a r e  
Fou r i e r  t r a n s f o r m s  one of the other;  this  is not surpr i s ing ,  since Debye ' s  approximat ion  is jus t  s imply  
the method due to Messignon quoted above,  but applied not to actual  space  but in wave space.  

We now a s s um e  that  the random behavior  of adjacent  pa r t i c l e s  is co r re la t ed ,  and that  the pa r t i c l e s  
p e r f o r m  pulsation mot ions  in groups ,  each of which consis ts  of s eve ra l  pa r t i c l e s :  it is read i ly  seen that  
the a rguments  leading to (8) and (10) stil l  apply, but (9) for  bf and (10) for  k 0 now become incor rec t ,  because  
they w e r e  obtained f rom a discuss ion of the f ree  volume of a single par t ic le .  The t rue  bf mus t  be g r e a t e r  
than the bf given by (9), while the cor responding  k 0 mus t  be l e s s  than the k 0 f rom (10), and so bf m a y  be 
cons idered  as a m e a s u r e  of the mean l inea r  s ize  of a group of pa r t i c l e s  involved in pulsat ing motion.  The 
reduction in the number  of ha rmon ics  in the Fou r i e r  r ep resen ta t ion  of p'(t ,  r ) ,  i . e . ,  reduction in k0, r e f l ec t s  
a reduction in the number  of independent deg rees  of f r eedom when the re  a re  co r re la t ions  between p a r t i c l e s ,  
which a r e  linked into groups .  

F r o m  (8) o r  (10) we have the m e a n - s q u a r e  fluctuation as 

< p , 2 >  = ,f ~(k) dk =p~ ( i - - P  o ) .  (11) 
P* 

This  quantity, if cons idered  as a function of P0, has a m a x i m u m  at P0 = 2/3p. .  I t  is of in te res t  to 
compa re  (11) with exper imenta l  evidence [1, 8] for  a fluidized bed; at the core  of the bed, i . e . ,  the main 
pa r t  in the height,  as  P0 approx imate ly  l inea r  and ve ry  c lose  to p . ,  i . e . ,  < p,2 > ~ CAp, where  Ap =P*-P0, 
and C is approx ima te ly  constant ,  which ag rees  qual i ta t ively with observa t ions  [1.8]. In the upper  zone of 
the bed, where  there  is a sharp  fall in P0, the fluctuation < pt2 > at  f i r s t  r i s e s  sharp ly  to a max imum,  and 
then it fal ls  sharply ,  which also co r responds  with exper iment .  Unfortunately,  d i r ec t  compar i son  with the 
expe r imen t s  of [1, 8] is difficult in view of the absence  of exact  numer ica l  data on &p and the var ia t ion  in 
this with height in the exper iments .  

The quantity of (11) is dependent only on P0 and p. ,  and it  is not dependent,  for  instance,  on bf o r  k 0 
and the other  p a r a m e t e r s  that  define the behavior  of the local  pulsat ions.  

I t  is of in te res t  for  appl icat ions to consider  a lso  the cor re la t ion  function of p'(t ,  1:), which r e l a t e s  the 
values  of this quantity at  two points in space  at d i f ferent  instants  in t ime.  The one - t ime  two-point  c o r r e l a -  
tion is eas i ly  exp re s sed  as an o rd ina ry  integral  [3] ove r  wave space  witll r e s p e c t  to eik~. ~(k), by analogy 
with the in tegral  of (2). To obtain the express ion  for  the two-point  two- t ime  cor re la t ion  function, we need 
the dynamic equation for  p'(t,  r); the s imples t  assumpt ion  would cor respond  to the hypothesis  that  this 
quantity sa t i s f ies  the o rd ina ry  diffusion equation in F i ck ' s  form.  This  is the point of view adopted as r e -  
ga rds  the dynamics  of concentrat ion per tu rba t ions  in the c lass ica l  s ta t i s t ica l  t r e a t m e n t  of Brownian motion 
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by Smoluchowski and Einstein,  and a lso  in the theory  of concentrat ion fluctuations for  dense d i spe r s e  s y s -  
t e m s  in [7]. The a f t e r - e f f e c t  p robabi l i ty  introduced there  was calculated via  F i ck ' s  equation; but it has 
been shown [9] that  it is a v e r y  crude approximat ion  to apply F i c k ' s  equation to a d i spe r sed  sy s t em,  and one 
should use the equation 

[(o00)trO 0] 
at = a-~" ~r  - -  ~*~ a-F p'' tr D :~= Di~, 

where  D is the t en s o r  for  the effect ive diffusion coeff ic ients ,  and w .2 is the mean square  of the pulsat ion 
veloci ty  of the pa r t i c l e s .  

This  equation desc r ibe s  a r egu l a r  degenera t ion  of the random distr ibut ion p'(t ,  r) given at some initial 
momen t  in t ime.  This degeneracy  is accompanied  by random accumulat ion of f r e sh  concentrat ion p e r t u r b a -  
t ions,  which of cou r se  is not desc r ibed  by this equation. However ,  the r andom occur rence  of per tu rba t ions  
m a y  be taken into account  by introducing on the r ight  an additional random t e r m ,  in which the t ime  for  sub-  
s tant ia l  change is much l e s s  than the c h a r a c t e r i s t i c  t ime  of the degenerat ion (see d iscuss ion  in [2]). Then 
this  t e r m  m a y  be cons idered  roughly as a Markov t ime  function whose spec t ra l  densi ty  is not dependent on 
the f requency  o~. We use the above r ep resen ta t ion  for  p'(t ,  r) in this supplemented equation to get  in the 
usual way  [3] a re la t ionship  for  ,I,(~, k): 

F tr D ~ ~ _ Dkk 

The unknown ~0(k) appear ing  he re  m a y  be der ived f rom the condition 

.!' g (~, k) d~o ~ q~ (k), 

so f inal ly we have  

-- co ~ + co s - -  Dkk (12) 

Substitution of (12) into (2) gives us the space-time correlation function R(T, 4) in terms of the effec- 
tive diffusion coefficients for the particles in the mixture and the mean square of the pulsation velocity. 

All the above relates to the case where one can assume the most accurate possible definition of the 
local values of p'(t, r) via the elucidation of situations in individual specific volumes; in fact, in experiments 
one can use devices that somewhat smooth out the local concentration perturbations, for instance, that per- 
form averaging over a definite volume of the mixture, which contains on average N particles. All the above 
formulas are suitable for describing such an experiment provided that we remember than in (6) in this case 
there appears a factor N -l, and consequently the value of ~(k), ~(w, k), < ;,2 >, etc. from such an experiment 
are also reduced by a factor N. 
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NOTATION 

is the volume concentration of disperse system; 
is the radius of particle; 
are volume, specific volume in a dense packed system; 
is the radius of volume af; 
is the frequency; 
is the wave vector; 
is the t en s o r  of diffusion coeff icients;  
is the mean  square  fluctuation velocity;  
a r e  a rguments  of co r re l a t ion  function; 
means  averaging .  
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